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The reaction path hamiltonian is used to investigate the isomerisation C H 3 0  -> 

CH2OH; the reaction path, the frequencies along it and the coupling 
coefficients describing reaction path curvature were calculated by ab-initio 
methods. Correlation effects were included by configuration interaction using 
a double-zeta-plus-polarisation basis set. Including both tunnelling and cur- 
vature gives temperature dependent rate constants in broad agreement with 
experiment, whereas previous results were in error by several orders of 
magnitude. 

Key words: Reaction path hamil tonian--Methoxy isomerization 

I. Introduction 

Now that ab-initio analytic gradient and second derivative calculations have 
become routine [1], it is becoming practical to investigate the dynamics of 
chemical reactions using accurate quantum chemical techniques. The reaction 
path hamiltonian (RPH) of Miller et al. [2] has made it leasable to use ab-initio 
methods to calculate reaction rates, and in particular, tunnelling contributions 
to these rates. The hamiltonian for a reacting system is expressed in terms of the 
reaction path, as defined by Fukui [3], and various quantities along it. The basic 
idea is to consider the potential as a one-dimensional barrier along the path and 
a multi-dimensional well in all perpendicular directions. Therefore it is not 
necessary to search large areas of the potential energy surface to define the 
hamiltonian. We have used the RPH to perform a detailed calculation on the 
contribution of tunnelling and reaction path curvature to the rate of isomerization 
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of  the methoxy radical. This isomerization may be important for the oxidation 
of methoxy in the upper  atmosphere. We presented some calculations on this 
system [4, 5] a few years ago, and have repeatedly been asked for the results of 
the more accurate calculations promised in that paper. The calculations described 
here use a higher level of  quantum chemical theory, and give results in much 
better agreement with experiment than those previously described. 

There have been many other calculations using the RPH and various authors 
have extended the theory [6-11] but we believe that this work is still the most 
complete treatment of  a system of more than three atoms. We explicitly calculate 
the coupling coefficients that enable reaction path curvature to be taken into 
account, and we treat all of  the 8 normal modes orthogonal to the reaction path, 
whereas most other authors ignore reaction path curvature and only consider 
one or two of the normal modes, treating the remainder as a heat bath. 

1.1. The reaction path hamiltonian 

The RPH of Milter et al. [2] has been described fully in earlier work, [6-8, 10, 11] 
and so is merely summarized here. 

I f  Ri, vi = 1 , . . . ,  N, y = x, y, z are the cartesian co-ordinates of  an N atom system 
with a single saddle point separating reactants and products, and mi, i -- 1 , . . . ,  N 
are the atomic masses, then the mass- weighted cartesian co-ordinates are xi, v = 
mil/2Ri,~. The reaction path, a (s ) ,  is defined as "the path of  steepest descent in 
mass-weighted cartesian co-ordinates from the saddle point to the products and 
to the reactants", i.e. 

al, v(s) = -(O V/Ox,,v)/ c 1/2 (1.1) 

where c = ~i,v (OV/Oxi, v) 2 is a normalization factor, and V is the potential energy 
as a function of the nuclear co-ordinates. 

The reaction co-ordinate, s, is defined by 

(ds) 2 --2~,v (dxi,~) 2 (1.2) 

and gives the length along the reaction path. For zero total angular momentum,  
the hamiltonian can be written: 

1[ ~7'3N-7 ]2  
QkP'k, Bkk', (s) 

~ 2 71_ 3N-7 2 + 2 2 H(ps,  s; if, Q ) =  Y,k=, [1/2Pk 1/2Wk(S)Ok] [+~N7 ] 1 •k=l  OkBk, gN-7(S) 

+ Vo(s), (1.3) 

where: Qk, Pk, k = I , . . . , 3 N - 7  are the normal co-ordinates and conjugate 
momenta  for motion orthogonal to the reaction path, found from the (3N-7) 
non-zero eigenvalues Wk(S) and corresponding eigenvectors [Li, v,k(S)] of the 
projected second derivative matrix at the point s. 
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The wk(s) give the frequencies of the transverse vibrations, Vo(s) is the potential 
energy along the reaction path, and Ps is the momentum conjugate to s. 

The Bk, k,(S) which give the reaction path curvature are defined as follows 

(i) Bk, k,(S)=~i,v(6Li,~/,k(S)/t~s)Li,~,k,(S), k~ k ' ,  k = l , .  . . . . .  3N-7 
(1.4) 

are coriolis coupling coefficients which give the couplings of the normal modes 
with each other, 

(ii) Bk,3N_6(S)=~i,~/(~Li, v,k(S)/t~s)a'i,v(s), k = l , .  . . . . .  3N-7 (1.5) 

give the couplings of the vibrational modes to the reaction path, and 

(iii) Bk, k(S)=--tO'k(S)/(2Wk(S)) (1.6) 

are the diagonal elements. 

Therefore, in order to define the reaction path hamiltonian for a given system, 
one needs to calculate: 

(a) The stationary points, i.e. reactants, products, and transition state. 

(b) The reaction path from the transition state to the reactants and to the products. 

(c) The projected force constant matrix at various points along the reaction path, 
and its eigenvectors and eigenvalues, i.e. normal modes and frequencies, and, 

(d) The coupling coefficients, Bk, k,(S ). 

2. Stationary points 

2.1. Equilibrium configurations 

The equilibrium configurations of the ground states of CH30 and CH2OH were 
located using the Schlegel [12] and Murtagh Sargent optimization routines 
available in CADPAC [13]. These calculations were carried out using high spin 
open shell restricted hartree lock with a Dunning double zeta basis set [14]. The 
configurations found are given in Table 1. 

Then the energy of each of these points was recalculated using singles + doubles 
configuration interaction (CI) with a Davidson correction, and a double zeta 
plus polarization basis set using p exponents of 1.0 on the hydrogens, and d 
exponents of 1.9 on the carbon and 1.2 on the oxygen. As shown in Table 1, the 
barrier height obtained was 37 kcal mo1-1 and the endothermicity was - 5  kcal- 
mo1-1, i.e. the reaction is exothermic. 

This agrees well with other predictions: e.g. the most accurate calculations by 
Saebr et al. [15] give the barrier height to be at least 36 kcal tool -1 and the 
endothermicity to be - 5  kcal/mol. 

Haney and Franklin [16] conclude from thermochemical data that the reaction 
CH30 -~ CH2OH is exothermic by 5 • 5 kcal tool -1, and Wendt and Hunziker [17] 
obtained an exothermicity of 9 kcal/mol from heats of formation. 
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Table 1. Equilibrium configurations for methoxy, hydroxymethyl, and the transi- 
tion state 

S. M. Colwell 

CH30 Transition state CH2OH 

RCO/A 1.434 1.416 1.391 
RCH3/~ 1.084 1.295 1.991 
RCH4/,~ 1.081 1.074 1.070 
RCH5/A 1.081 1.074 1.077 
ROH3//~ 0.951 
OCH3 106.28 51.72 
OCH4 110.63 116.97 112.41 
OCH5 110.63 116.97 117.94 
H3OC 115.12 
OCH3-H4 118.37 104.29 176.25 
OC H3-H 5 - 118.37 - 104.29 -37.29 
H4CH5 110.87 119.46 120.14 

RHF energy/hartree 
-114.4034 

CI energy/hartree 

Barrier heights: 

-114.2913 -114.3875 

-114.7434 -114.6839 -114.7527 

E(TS) - E ( C H 3 0  ) = 37.29 kcal mol -~ 
E(TS) - E ( CH20H ) = 43.15 kcal mo1-1 
E(CH30) -E(CH2OH) = -5.86 kcal tool -1 

Stationary points calculated to 10 - 6  in the gradients which imply 10 -5 .~ and 
10 -3 degrees for this basis set. See Fig. 1 for definition of labels 

It would  have been  more accurate to optimize the geometry using CI  with the 

larger basis set, but  it would  then have been  necessary to calculate the frequencies 

along the react ion path by the same method,  and  this would  have been  unrealist i-  

cally expensive. As the system is open  shell, the q u a n t u m  chemical  calculat ions 
were not  easy; severe convergence difficulties were met, as described in [4] and 
[5], and these increased with increasing level of calculat ion.  It is well established 
for this type of molecule [ 18] that self consistent  field (SCF) geometries calculated 
with a double  zeta basis are much more accurate than  the size of the basis set 

would  suggest, and  in fact are nearer  to exper iment  than  those calculated with 
a double  zeta plus polar iza t ion  basis. This is because the error due to the small 

size of the basis and  the error caused by neglect ing correlat ion cancel more 
effectively with this basis than  with a larger one. It is also recognised that a 
singles plus  doubles  CI  calculat ion with a double  zeta plus polar izat ion basis at 
these geometries will give a d ispropor t ionate ly  accurate energy, and  so this 
procedure  seems justified. 

3. Calculation of the reaction path 

To start to locate the react ion path, it is necessary to identify the direct ion of 
negative curvature at the t rans i t ion  state. Therefore a second derivative calculat ion 
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was performed at the saddle point using the analytic second derivative method 
as implemented in CADPAC [13]. 

Once the direction of negative curvature has been identified, a small displacement 
8s is made along this line, and the energy and gradient calculated at the new 
point. The unit vector in the direction of the negative gradient vector is then 
calculated, and a small displacement is made along it. The energy and gradient 
are calculated at this new point, and the procedure is repeated until products or 
reactants are reached. All these calculations were done at the SCF level. 

The reaction profile (i.e. energy versus reaction coordinate) was then scaled to 
give the CI barrier height and endothermicity. A different scaling factor was 
needed on each side of the barrier; the values used were: A1 = 0.53 ( C H 3 0  to TS) 
and ~2 = 0.72 (TS to CH2OH). The reaction coordinate is unchanged by scaling. 
The scaled reaction profile is shown in Fig. 1. 

The second derivative matrix was also calculated at each point on the reaction 
path as it was found. This matrix was then projected to remove motion along 
the reaction path as well as overall translational and rotational motion, and then 
diagonalised to give the harmonic frequencies wk(s) and the corresponding 
normal modes Li,~,k(s). The vibrational frequencies calculated at CH30 and 
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CH2OH were then compared with experiment. A single linear scaling factor 
(A = 0.90) was used which brought the calculated frequencies into closest agree- 
ment with experiment. This factor was used to scale all the frequencies at all 
points along the reaction path. The variation of scaled harmonic frequencies with 
reaction coordinate is shown in Fig. 2. 

The modes are labelled as appropriate for the transition state. It at first appeared 
that there were two points at which the frequencies of  two modes of the same 
symmetry appeared to cross (i.e. L1 with L4 at s = -0 .2  and L2  with L3 at s = -0.05) 
but on more detailed examination it was found that the modes changed character 
along the path and were most appropriately identified in such a way that the 
crossings were avoided. The only frequencies that change appreciably are w6 and 
o) 1. L 6 looks like a CH stretch at CH30,  a "ring breathing" at the saddle, and 
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Fig. 2. Var ia t ion  of  the sca led  pro jec ted  h a r m o n i c  f requencies  a long  the reac t ion  pa th  for the 
i somer iza t ion  CH30--> CH2OH.  The modes  are labe l led  as appropr i a t e  for the t rans i t ion  state (TS). 

wl tors ion;  w2CH2 wag;  w3CO stretch;  to4CH 2 Rock;  o) s scissor;  ~06 r ing brea th ing ;  w7 symmet r ic  

C H  2 stretch;  ~08 asymmet r i c  CH2 stretch 
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an OH stretch at CH2OH, and so the frequency varies from a stretching to a 
bending and back to a stretching frequency during the reaction. 

La is the torsion mode, i.e. the out of plane motion of the odd hydrogen, and wa 
decreases markedly as s increases towards CHzOH. At s =0.6 o91 has become 
imaginary which implies that the second derivative matrix has a negative eigen- 
value. Whilst all the w~ are positive the reaction path maintains the Cs symmetry 
of CH30 and the transition state, but as CH2OH has C~ symmetry it is necessary 
for the symmetry to be broken at some point. The point at which w~ becomes 
zero (s -~ 0.55) is a bifurcation point, and there are then two equivalent reaction 
paths from this point, one to each of the two enantiomers of CH2OH. 

The points given in Fig. 1 for values of s larger than this, i.e. closer to CHzOH, 
are therefore not on the true reaction path. There are two directions of negative 
curvature, and the system can be envisaged as moving along a ridge in the 
potential energy surface. This second negative curvature direction can be 
envisaged as a barrier for interconversion between the two equivalent forms of 
CH2OH. 

Clearly, beyond this bifurcation point, a simple picture of one-dimensional 
tunnelling is not appropriate. This point is, however, 7000 cm -~ below the top 
of the barrier, and as our previous calculations showed that this area of the 
potential curve is not important for tunnelling, no attempt was made to calculate 
the frequencies along the true reaction path past the bifurcation point. 

4. Calculation of the coupling elements 

The coupling elements Bk.k,(s) involve the first derivatives of the normal modes 
w.r.t, distance along the reaction path. They cannot routinely be calculated 
analytically at present, as they involve energy derivatives of third order, and so 
must be calculated by finite difference techniques. As they have dimensions of 
(reaction coordinate) -1 they are not affected by the scaling procedure. Details 
of the values of the Bk, k, and the precise method of calculation can be found in 
paper [5]. As modes 1, 4 and 8 have a" symmetry, their coupling with the reaction 
path and the other a' modes is zero. As Bk, k,(k ~ k') is skew symmetric, this further 
reduces the number of independent coriolis coupling coefficients from 56 to 13. 
There are also 5 n o n - z e r o  Bk, F, and all 8 of the diagonal coupling elements, Bk, k" 
must be used. 

5. Calculation of reaction rates 

5.1. The microcanonical rate constant K ( E )  

For the case J = 0, the microcanonical rate constant is given by [19] 

K ( E )  = N(E)/(27"rhpo(E)) (5.1) 

where po is the density of states at the reactants and N ( E )  is the cumulative 
reaction probability, po(E) is calculated from the classical Whitten-Rabinowitch 



130 S.M. Colwell 

expression [20] 
3N-6 \ 

I h3N-6 rqr | po(E) = E3N-7/ (3N-7).  11 to,,0). (5.2) 

5.2. The adiabatic approximation 

The RPH given in (1.3) is most easily solved for the reaction probabili ty using 
the vibrationally adiabatic approximation.  This assumes that the motion along 
the reaction path is very slow compared with the transverse vibrations, and so 
all the normal modes stay in the same state during the course of  the isomerization. 

In terms of the action-angle variables for the transverse vibrational modes (n k + 

1/2), qk, k = 1 , . . . . ,  3N-7, the hamiltonian becomes: 

3N-7 
H(ps, s;n, q ) =  ~ (nk+l/2)tOk(S)+ Vo(s) 

k = l  

~ p~ - [((2nk + 1)(2nk,+ 1)o)k,(s)/~ok(s)) ~/2 COS qk' sin qkBk, k'(S) 
k , k  = 1 

q (5.3) 
I 3N-7 12 

1 + Y~ ((2nk + 1)/tOk(S)) 1/2 sin qkBk.v(S) 
k=l 

I f  also the zero curvature approximation is used, the hamiltonian becomes: 

3N-7 
H(ps, s;n) = • (nk + 1/2)tOk(S) + Vo(S) + 1/2p 2. (5.4) 

k=l 

The nk are constants of  the motion for any fixed value of s, Ps, and by the adiabatic 
approximation they are constant as s changes. Therefore the motion can be 
regarded as being in the vibrational state n (n; integers) perpendicular to the 
reaction path. The energy in each mode will change as OOk(S) varies, but the nk 
do not. The hamiltonian is thus reduced to that for the one dimensional problem 
of motion along the reaction path, which can be solved. 

To apply the vibrationally adiabatic approximation to (5.3) retaining the curvature 
terms, it is necessary to regard s and Ps as paramters and to make a canonical 
transformation to the true action-angle variables of  the system, ( N  k q-1/2), Qk at 
each point. The hamiltonian will then be a function of N, s, and p~ only, i.e. the 
N/ will be constants of  motion for given s and ps, and will stay constant as s 
and Ps vary, by the adiabatic approximation.  Therefore, as in the zero curvature 
case, the system can be regarded as being in the vibrational state N (N~ integers) 
perpendicular to the reaction path, and the hamiltonian becomes essentially 
one-dimensional. 

5.3. No tunnelling 

Calculations were first performed without allowing for tunnelling. The reaction 
probability was taken to be: 

1 i f ( n + l / 2 ) ' t o + V ~ a x < E  (5.5a) 
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and 

0 i f ( n + l / 2 ) ,  t o + V m a x > E .  (5.5b) 

For each value of  E these probabilities were summed over all states n, to give 
N(E) and hence K(E).  Calculations were performed from the zero-point energy 
of  CHaO (E0 = 792t cm -1) to 26 000 cm -1 above it. The results are given in Fig. 3. 

N(E) is zero until the classical threshold is reached (E-Eo = 11 950 cm -1) when 
one state (n = 0) has enough energy in the reaction coordinate mode  to overcome 
the barrier. At higher energies N(E) involves the sum over typically 100 000 
states (values of  n). 

5.4. Vibrationally adiabatic zero curvature ( VAZC) 

The next approximation is to include the tunnelling but to assume zero curvature, 
which is equivalent to ignoring all the B u coupling elements. The hamiltonian 
is as given in (5.4) and can be rearranged to give: 

( [ 3N-7 / /  "],1/2 
Ps = 2 E -  V o ( s ) -  2 (nk+I /2)~ok(s) l l  . (5.6) 

k = l  
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Fig. 3. Values of the microcanonical rate constant K(E) for the reaction CH30-~CH2OH. Zero 
point energy: E o = 7921 cm- l ;  classical threshold: E - E  o = 11 953 crn -1. Calculated (a) without tun- 
nelling ( ); (b) with tunnelling but without curvature ( - - - ) ,  and (c) with both tunnelling and 
curvature ( - - . - - )  
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Semiclassically, i.e. within the first order WKB approximation,  N(E) is given by: 

N(E)  = • [1 + exp [20(E, n)]] -1, (5.7) 
n 

where 

o(E, . )  = as Im [p~(s, ~, . ) ]  (5.8) 

is the barrier penetration integral, and S> and s < are the classical turning 
points. For each value of n (5.6) is solved for p~ = 0 to give s < and s > ,  and 
Im(ps) is integrated to give O(E, n). The reaction probabilities are summed over 
all contributing states to give N(E) and hence K(E). States such that 

E - Vmax -- (n + 1/2).oJ < --6300 cm -1 (5.9) 

were excluded from the calculation as they gave negligable reaction probabilities. 
At low energies only a few values of  n contributed, at energies just below the 
classical threshold ~ 1000 states contributed and at higher energies N(E) involved 
the sum over >100 000 states. 

The results are shown in Fig. 3. K(E) grows gradually from about 6000 cm -1 
below the classical threshold. As would be expected, the VAZC results are always 
higher than the no-tunnelling ones, but this difference becomes less significant 
as the energy increases. 

5.5. With curvature-theory 

The simplest way to include curvature is to make the canonical transformation 
to the true action-angle variables of  the system, (Ni + 1/2, Qi) at fixed s, Ps using 
2nd order perturbation theory. 

Assuming that the coupling elements, B, are small, and using Born's classical 
canonical perturbation theory [21], it can be shown that [5, 6]: 

Eo(ps, s; N) i 2 =~ps+  V(s; N)+ A(s; S)+p~B(s; N)-p~C(s)  (5.10) 

where 

3 N - 7  

V(s; N ) =  Vo(s)+ ~ (Nk+I/2)Wk(S). (5.11) 
k ~ l  

and A(s; N), B(s; N) and C(s) are algebraic expressions involving sums over 
rational functions of the B and the wi. The exact expressions are given in [5], 
Eqs. (5.24)-(5.26). 

Therefore, using energy conservation, one has 

-C(s)p~+(B(s; N I 2 ) +~Ps + A(s; N) + V(s; N) = E (5.12) 

which can be solved to give: 

P~ = (_2(V+A_E))a/2[(B+I~+ ((B+�89 1/2. (5.13) 
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For a given choice of  N (Ni integers) (5.13) can be solved for Ps = 0 to give the 
classical turning points. Im (p~) can then be integrated between them to give 
O(E, N)  which can then be summed over all states N to give N ( E )  and hence 
K(E)  as in the VAZC case. 

5.6. With curvature-results 

The results of  these calculations are shown in Fig. 3. For energies 4000 cm -1 or 
more below the barrier, the microcanonical rate constants are reduced by cur- 
vature; for energies less than 4000 cm -1 below the barrier the rate constants are 
increased. As the energy increases, the two sets of  results become almost identical. 
Because the effects of  curvature are relatively small, it would appear  that the use 
of  perturbation theory is justified in this case. 

5. 7. Temperature dependent rate constants 

The temperature dependent rate constant is given by [22] 

]/[ ;) ] K(E)  = N(E)  exp ( - E / k T )  dE h too(E) exp ( - E / k T )  dE 
0 0 

(5.14) 

where Eo is the zero-point energy of the reactant. This can be written in the 
lagnuage of  transition state theory (TST) as: 

K( T) = kT/h  zS; (5.15) 
z 

with 

f) Z$ = N ( E )  exp ( - E / k r ) d ( E / k r )  (5.16) 
O 

Z = po(E) exp ( - E / k T )  dE. (5.17) 
0 

This differs from the usual TST expression as the integral for Z + extends down 
to Eo to take into account the tunnelling contribution from all the reactant 
energies. The expression for N ( E )  involves the values of  g (s ) ,  the variable 
frequencies Ok(S), and the curvature elements Bk, k,(S ) for a range of values of s 
along the reaction path, not just their values at the transition state. In the 
no-tunnelling case this does reduce to the usual TST expression. 

Equation (5.17) was integrated numerically to give K (T) for values of  T between 
100 K and 1000 K. The results are shown in Table 2. 

It can be seen that the rate constants calculated with tunnelling (Cols 2 and 3) 
are significantly higher than those calculated without (Col 1), therefore showing 
the importance of including tunnelling in these investigations. As with the micro- 
canonical rates, the effects of  including curvature are not uniform; below 450K 
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Table 2. Temperature dependent rate constants for the isomerization of the methoxy radical 

K ( T ) / s  -1 No tunnelling With tunnelling With curvature b 
/K VAZC" 

100 0 0.22 x 10 32 0.15 • 10 -39 

200 0.11 • 10 24 0.17 x 10 -13 0.20 • 10 -16 

300 0 .34x  10 12 0.55 x 10 -7 0.43 x 10 -8 

400 0.61 x 10 6 0.23 • 10 -3 0.15 x 10 .3 

500 0.36 x 10 z 0.93 x 10 -1 0.12 x 10 ~ 

600 0.12 x 101 0.97 x 101 0.13 x 102 

700 0.83 x 102 0.36 • 103 0.43 x 10 +3 

800 0.20 • 104 0.63 • 104 0.69 • 104 

900 0.25 x 105 0.62 x 105 0.65 x 105 

1000 0.19 x 106 0.41 x 106 0.42 x 106 

a Vibrationally adiabatic zero curvature approximation. See Sect. 5.4 
b With curvature. See Sect. 5.5 

curvature  decreases  the rate  constant ,  above  450K the rates are increased .  Fo r  
example  at  700K the rate is increased  f rom 0.36 x 103 to 0.43 x 103 per  second,  
bu t  at 1000K the co r r e spond ing  rates are 0.41 x 106 and  0.42 x 106 per  second.  

These  results  are in b r o a d  agreement  with the  values es t imated  f rom ther-  
mochemica l  cons ide ra t ions  by  Batt  et al. [23], who give u p p e r  b o u n d s  o f  10 .6 s -1 
at 300 K and  2 x 104 s -1 at 650 K. Our  prev ious  results  differed f rom these by  
abou t  ten orders  of  magn i tude ,  and  so were not  chemica l ly  useful.  This p resen t  
work  demons t ra t e s  tha t  it is essent ia l  to inc lude  cor re la t ion  effects, and  that  when  
they  are i nc luded  it is poss ib le  to get reac t ion  rates which  are chemica l ly  mean-  

ingful.  

6. Summary 

In this p a p e r  a very de ta i l ed  quan tum mechan ica l  ca lcu la t ion  has been  pe r fo rmed  
for  the i somer iza t ion  CH30--> CH2OH. The reac t ion  pa th  has been  found ,  and  
f requencies  and  norma l  co-ord ina tes  o r thogona l  to the pa th  have been  de te rmined .  
The theory  o f  the reac t ion  pa th  hami l t on i an  has been  used  to ca lcula te  the 
mic rocanon ica l  and  t e m p e r a t u r e - d e p e n d e n t  rate constants  using a semiclass ica l  
pe r t u rba t i on  theory  a p p r o a c h  inc luding  bo th  the  effects o f  tunnel l ing  and  reac t ion  

pa th  curvature .  

A l though  this ca lcu la t ion  was compu ta t i ona l l y  ra ther  expensive,  and  the pro-  
cedure  is in no sense au tomat ic ,  it does  demons t r a t e  the  p o w e r  pa th  h a m i l t o n i a n  
me thods  to give chemica l ly  reasonab le  answers  for  quite large systems. 
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